81 research outputs found

    Higgs boson decay into four leptons at NLOPS electroweak accuracy

    Get PDF
    In view of precision studies of the Higgs sector at the Run II of the LHC, the improvement of the accuracy of the theoretical prediction is becoming a pressing issue. In this framework, we detail a calculation of the full Next-to-Leading Order (NLO) electroweak corrections to Higgs boson decay into four charged leptons, by considering the gold-plated channel H -> Z(*) Z(*) -> 2l 2l', l,l' = e, mu. We match the NLO corrections with a QED Parton Shower (PS), in order to simulate exclusive multiple photon emission and provide novel results at NLOPS electroweak accuracy. We compare our NLO predictions to those of the program Prophecy4f and present NLOPS phenomenological results relevant for Higgs physics studies, with particular attention to precision measurements of the Higgs boson mass, spin-parity assignment and tests of the Standard Model. Our calculation is implemented in a new code, Hto4l, which can be easily interfaced to any generator describing Higgs boson production. As an example, we provide illustrative results for Higgs production and decay in the process gg -> H -> 4l using POWHEG with NLOPS accuracy in the production mode.Comment: 27 pages, 2 tables, 9 figures. New numerical results and plots for dressed leptons. Conclusions unchanged. Version to appear in JHE

    Precision Measurement of the W-Boson Mass: Theoretical Contributions and Uncertainties

    Full text link
    We perform a comprehensive analysis of electroweak, QED and mixed QCD-electroweak corrections underlying the precise measurement of the W-boson mass M_W at hadron colliders. By applying a template fitting technique, we detail the impact on M_W of next-to-leading order electroweak and QCD corrections, multiple photon emission, lepton pair radiation and factorizable QCD-electroweak contributions. As a by-product, we provide an up-to-date estimate of the main theoretical uncertainties of perturbative nature. Our results can serve as a guideline for the assessment of the theoretical systematics at the Tevatron and LHC and allow a more robust precision measurement of the W-boson mass at hadron colliders.Comment: 51 pages, 10 figures and 16 tables. Minor corrections: new citations and reference to the svn revisions of the POWHEG code. Numerical results and conclusions unchange

    Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders

    Get PDF
    We present a detailed study of the production of a high transverse-momentum lepton pair at hadron colliders, which includes the exact O(alpha) electroweak corrections properly matched with leading logarithmic effects due to multiple photon emission, as required by the experiments at the Fermilab Tevatron and the CERN LHC. Numerical results for the relevant observables of single Z-boson production at hadron colliders are presented. The impact of the radiative corrections is discussed in detail. The presence in the proton of a photon density is considered and the effects of the photon-induced partonic subprocesses are analyzed. The calculation has been implemented in the new version of the event generator HORACE, which is available for precision simulations of the neutral and charged current Drell-Yan processes.Comment: October 2007, 22p

    Strategies for successful vaccination against hepatocellular carcinoma.

    Get PDF
    Current therapies against hepatocellular carcinoma (HCC) are not curative in the majority of patients. In the past, immunotherapy approaches aimed to non-specifically stimulate immune response were quite ineffective. New treatments based on stimulation of specific anti-tumor immune response are currently proposed and appear more promising. Tumor-specific antigens identified in HCC demonstrated immunogenicity both in preclinical and clinical trials. Effectiveness in animal studies raised interest in the clinical applicability of non-specific adoptive immunotherapy that prevented disease recurrence after tumor resection. Dendritic cell (DC)-based tumor vaccines achieved encouraging results, and cellular vaccines based on DCs have already entered clinical trials. Preventive and therapeutic DNA vaccination have been proposed, all based on tumor-associated antigens (TAAs), either modified or not, an example being alpha-fetoprotein (AFP). The concomitant expression of co-stimulatory molecules and cytokines was used to increase tumor immunogenicity. Syngeneic or nude mice models indicated that immunotherapy for HCC could stimulate an anti-tumor T-cell response leading to clinical benefit devoid of significant toxicity. The use of DNA-based vaccination raises exciting possibilities in preventing HCC in high-risk individuals such as those with cirrhosis. Novel immunotherapy strategies may contribute in the future to prevention and treatment of HCC

    Multiple photon corrections to the neutral-current Drell-Yan process

    Full text link
    Precision studies of single W and Z production processes at hadron colliders require progress in the calculation of electroweak radiative corrections. To this end, higher-order QED corrections to the neutral-current Drell-Yan process, due to multiple photon radiation in Z leptonic decays, are calculated. Particular attention is paid to the effects induced by such corrections on the experimental observables which are relevant for high-precision measurements of the W-boson mass at the Tevatron Run II and the LHC. The calculation is implemented in the Monte Carlo event generator HORACE, which is available for data analysis.Comment: 16 pages, 4 figures, 3 tables, JHEP3 styl

    Electroweak corrections to e+eγγe^+e^-\to\gamma\gamma as a luminosity process at FCC-ee

    Full text link
    We consider large-angle two photon production in e+ee^+ e^- annihilation as a possible process to monitor the luminosity of a future e+ee^+ e^- circular collider (FCC-ee). We review and assess the status of the theoretical accuracy by performing a detailed phenomenological study of next-to-leading order electroweak corrections and leading logarithmic QED contributions due to multiple photon radiation. We also estimate the impact of photonic and fermion-loop corrections at next-to-next-to-leading order and the uncertainty induced by the hadronic contribution to the vacuum polarization. Possible perspectives to address the target theoretical accuracy are briefly discussed.Comment: 13 pages, 3 figures, 3 tables. Extended version, with theoretical details and further numerical results, of the contribution to the workshop proceedings arXiv:1905.05078 by the same authors. v2: minor text modification, one reference adde

    Muon-electron scattering at NLO

    Get PDF
    We consider the process of muon-electron elastic scattering, which has been proposed as an ideal framework to measure the running of the electromagnetic coupling constant at space-like momenta and determine the leading-order hadronic contribution to the muon g2g-2 (MUonE experiment). We compute the next-to-leading (NLO) contributions due to QED and purely weak corrections and implement them into a fully differential Monte Carlo event generator, which is available for first experimental studies. We show representative phenomenological results of interest for the MUonE experiment and examine in detail the impact of the various sources of radiative corrections under different selection criteria, in order to study the dependence of the NLO contributions on the applied cuts. The study represents the first step towards the realisation of a high-precision Monte Carlo code necessary for data analysis.Comment: 25 pages, 2 tables, 14 figures. Minor typos corrected, reference 31 updated. Version matching publication on JHE

    Matching perturbative and Parton Shower corrections to Bhabha process at flavour factories

    Get PDF
    We report on a high-precision calculation of the Bhabha process in Quantum Electrodynamics, of interest for precise luminosity determination of electron-positron colliders involved in R measurements in the region of hadronic resonances. The calculation is based on the matching of exact next-to-leading order corrections with a Parton Shower algorithm. The accuracy of the approach is demonstrated in comparison with existing independent calculations and through a detailed analysis of the main components of theoretical uncertainty, including two-loop corrections, hadronic vacuum polarization and light pair contributions. The calculation is implemented in an improved version of the event generator BABAYAGA with a theoretical accuracy of the order of 0.1%. The generator is now available for high-precision simulations of the Bhabha process at flavour factories.Comment: 34 pages, 8 figures, uses elsart.cls. Version to appear on Nuclear Physics

    Expression of high- and low-affinity epidermal growth factor receptors in human hepatoma cell lines

    Get PDF
    AbstractData are presented from a comparative research on expression of epidermal growth factor (EGF) receptors and response to EGF of six independently established cell lines derived from human hepatoma. These lines differ in terms of the degree of differentiation, presence of hepatitis B virus (HBV) DNA copies in integrated form and expression of HBV genes. Our results indicate differential expression of membrane EGF receptors and differential response to EGF under serum- and hormone-free culture conditions. Furthermore, a significant difference in affinity could be detected between EGF receptors of the two highly dedifferentiated cell lines (HA22T/VGH and Li7A) whose replication is inhibited by EGF concentrations capable of stimulating more differentiated phenotypes
    corecore